
US010824402B2

(12) United States Patent (10) Patent No .: US 10,824,402 B2
(45) Date of Patent : Nov. 3 , 2020 Samuel et al .

(56) (54) BYTECODE GENERATION FROM UML
MODELS

References Cited
U.S. PATENT DOCUMENTS

(71) Applicants : Philip Samuel , Kerala (IN) ; Renu
George , Kerala (IN) 8,495,560 B2 * 7/2013 Dangeville G06F 8/35

715/700
G06F 8/10

717/132
8,578,346 B2 * 11/2013 Chao

(72) Inventors : Philip Samuel , Kerala (IN) ; Renu
George , Kerala (IN) (Continued)

(*) Notice : OTHER PUBLICATIONS Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .

(21) Appl . No .: 15 / 767,252

Usmant et al . , Automatic Generation of Java Code from UML
Diagrams using UJECTOR , Apr. 2009 , International Journal of
Software Engineering and its Applications vol . 3 , No. 2 (Year :
2009) . *

(Continued) (22) PCT Filed : Oct. 15 , 2015

PCT / IN2015 / 000389 (86) PCT No .:
$ 371 (c) (1) ,
(2) Date :

Primary Examiner Chat C Do
Assistant Examiner Bradford F Wheaton
(74) Attorney , Agent , or Firm — D'Ambrosio & Menon ,
PLLC ; Usha Menon Apr. 10 , 2018

(87) PCT Pub . No .: WO2017 / 064722
PCT Pub . Date : Apr. 20 , 2017

(65) Prior Publication Data
US 2019/0079738 A1 Mar. 14 , 2019

(51) Int . Ci .
GO6F 8/35 (2018.01)
GO6F 8/10 (2018.01)

(Continued)
(52) U.S. Ci .

CPC GO6F 8/35 (2013.01) ; G06F 8/10
(2013.01) ; G06F 8/427 (2013.01) ; G06F

8/433 (2013.01) ;
(Continued)

(58) Field of Classification Search
CPC G06F 8/35

(Continued)

(57) ABSTRACT
Unified Modeling Language is a general purpose modelling
language used in the field of software development to easily
visualize the systems by specifying the static and dynamic
aspects of the system . The conventional way of implement
ing design models is by writing programs in high level
languages like java by a programmer . Our method automati
cally generates platform independent executable code in the
form of bytecode without a programmer and it can be
executed on any platform . The design models comprising of
class and activity diagrams after parsing and syntax verifi
cation are converted to an autobytecode model . The auto
bytecode model is further processed to determine the execu tion sequence comprising of loops , sequential and
conditional statements . The execution sequence , the actions
and attributes associated with the nodes in the execution
sequence are analyzed to automatically generate complete
bytecode directly from the autobytecode model created from
design models .

11 Claims , 6 Drawing Sheets

200

Design Diagrams
202 203

Parse Verify Syntax

AutoBytecode Model

205 Identify Execution Sequence

Generate Code

Execute and Test

209

US 10,824,402 B2
Page 2

2007/0094542 Al * 4/2007 Bartucca

2011/0179007 A1 * 7/2011 Shi

G06F 11/3672
714 / 38.1

G06F 16/958
707/706

HO4L 41/12
370/254

2014/0269422 A1 * 9/2014 Filsfils

(51) Int . Ci .
GO6F 8/41 (2018.01)
G06F 9/445 (2018.01)
G06F 11/36 (2006.01)

(52) U.S. Ci .
CPC G06F 9/44589 (2013.01) ; G06F 11/3604

(2013.01)
(58) Field of Classification Search

USPC 717/104
See application file for complete search history .

OTHER PUBLICATIONS

(56) References Cited

Usman , Muhammad et al : “ Automatic Generation of Java Code
from UML Diagrams using UJECTOR ” International Journal of
Software Engineering and Its Applications vol . 3 , No. 2 , Apr. 2009 .
Jim , Sabrina L. “ From UML diagrams to behavioural source code ” ,
Sep. 7 , 2006 .
International Search Report and Written Opinion dated Apr. 12 ,
2016 for related PCT App . No. PCT / IN2015 / 000389 .

U.S. PATENT DOCUMENTS

9,311,434 B1 *
2003/0182292 A1 *
2004/0060037 A1 *

4/2016 Berg
9/2003 Leong
3/2004 Damm

G06F 30/367
G06F 9/4493
GOOF 3/04883

717/104 * cited by examiner

U.S. Patent Nov. 3 , 2020 Sheet 1 of 6 US 10,824,402 B2

Syntax
Verifier

UML Diagram
Parser

100
Tool

104 106 Execution Autobytecode
Model

Sequence
Identifier

Bytecode
Generation

Code
Testing

107

Java Virtual Machine

Windows Linux

Fig . 1

200

Design Diagrams
202 203

Parse Verity Syntax Read Marks

204 mark50] AutoByteCode Model

205 Identify Execution Sequence Result = " Fail " 302 Resut " Pass *
304

Generate Code

207 305
Execute and Test Pimt Result

208

Fig . 2 Fig . 3

U.S. Patent Nov. 3 , 2020 Sheet 2 of 6 US 10,824,402 B2

-401
Insert Card

402
Enter PIN

[Invalid PIN) Valid PINI

405 403

Display " incorrect PIN *
Display Menu

Fig . 4

500

Exan?ine first element

502 Ipseudo state
(NO) 506 faction statel

503
(decision 507 finitial)

INO)
process action node

process initial node 505
[Transition

509 process decision node
Process Transition

Process final Node

Read next Element

[Nexi Element Found

513 fisica

Fig . 5

U.S. Patent Nov. 3 , 2020 Sheet 3 of 6 US 10,824,402 B2

000

601
Examine first node

602
to white Compute InTransition

and Out Transition

Taction) initial)
606

(decision (final)

(in = 0 or out = 0]] (in = 0 or out < 2] 608 (in = 0 (out = 0)
605 -610 609 605

Missing Edge Error Missing Edge Error
Check guard Conditions (syntax correct

(Guard present) (NO)
(syntax correct)

(identical guard) 612
615

Missing Guard Error
Identical Guard Error (syntax correcil

INOL
614

607
Read next node

[Next node existe] -616

INO

no 17

Fig . 6

U.S. Patent Nov. 3 , 2020 Sheet 4 of 6 US 10,824,402 B2

702
Read initial note Process Node

Get next Node in the
execution sequence

[visited
704

(not visited)
Process current Node nark node as visited

faction node) (decision node)

finai node) identify incoming edges Process decision node
(Figure 8)

709 .

lin11
Attach label

Process final node

713

Fig . 7

800

Process Decision Node
902

Examine the THEN branch

803 Process node

(not visited [visited]

Examine ELSE branch
Process Loop
T

Attach Label 808 Process ELSE node

(not visited) visited)
806

810 Process Loop Attach Label
Compare THEN and ELSE nodes

812
(no) Process merge node

(common noder

Fig . 8

U.S. Patent Nov. 3 , 2020 Sheet 5 of 6 US 10,824,402 B2

900

901 Examine the first node
and mark as visited

initial nodel
903

Generate code for initial node (action node) 905
904 906 Initialize arrays and variables

Process action node
(decision node)

(final node] Idemity attributes
imoted

mkconditional statement?
Hoop)

code for end method
908 process loop

Generate code
process conditional

statement
Examine next node

in the list

m9 : 15
(no) } (next node exists)

Fig . 9

process conditon expression

1002 get first node of THEN
(next node existsi

Inot visited)

Generate GOTO
1005

Mark node as visited remove from list
1012 Get first node or ELSE

Msiled (decision node) .

process decision node 1008
Generate GOTO

generate code for
action node

Get next node

(no)
WA.XiWwwwwwwwwwww

Fig . 10

U.S. Patent Nov. 3 , 2020 Sheet 6 of 6 US 10,824,402 B2

1100

1101
Examine decision node

Generate code for condition 1102

generate GOTO label to
first node of ELSE

1103

1104 Examine first node of
THEN branch Inext node existsi

IELSE branch) THEN branch)
1106

1105 1106

mark as visited mark as visited

1107
remove from list remove from list

{ action node) (decision nodel
1110 1109 1108

process action node process decision node

Examine next non visited node

1113
Imerge node]

Process Merge node

Fig . 11

10

15

20 else .

US 10,824,402 B2
1 2

BYTECODE GENERATION FROM UML should have either Windows or Linux as the operating
MODELS system . Our claim includes a method that allows for auto

matic generation of efficient and accurate executable byte
TECHNICAL FIELD code from an autobytecode model comprising of the speci

5 fications of the class and activity diagrams .
Our invention describes the processing of an autobyte The method according to the embodiment of disclosure

code model created from Unified Modeling Language generates executable bytecode from the autobytecode model
(UML) models to generate bytecode which is executable without writing a computer program .
code facilitating execution of the design models . The method according to the embodiment of disclosure

automates the process of bytecode generation which helps to
BACKGROUND ART bypass the role of programmer as well the process of code

generation . Object oriented models have been accepted today as the The method according to the embodiment of disclosure de - facto standard for modelling of software systems in
industry . To generate computer software for any application , performs syntax check on the components of the diagram .
the analyst performs a requirement analysis about the user The method according to the embodiment of disclosure
needs and models the requirements to appropriate design identifies the sequential flow of execution .
diagrams . A standard language like UML is commonly used The method according to the embodiment of disclosure
for modelling the requirements . UML provides a graphical identifies loops and conditional construct such as if - then
representation of the system .
UML provides different diagrams for modelling the vari The method according to the embodiment of disclosure

ous aspects of the system . Class diagrams are used to model maintains consistency between the models and code gener
the static aspects . Class diagrams provide information about ated .
the classes that are present , the information about the The method according to the embodiment of disclosure
attributes and methods of each class and how they are 25 executes the design models directly on any platform .
related .

Dynamic or behavioural aspects are modelled using activ BRIEF DESCRIPTION OF THE DRAWINGS
ity diagrams , sequence diagrams and statechart diagrams .
Activity diagram provides a high level description of the FIG . 1 shows the development frame work for converting
control flow in a program . An activity diagram is a collection 30 an autobytecode model generated from syntactically correct
of nodes and edges . Nodes represent computation and edges UML class and activity diagrams to bytecode according to
represent flow of control . The node type determines the type the embodiments of the invention .
of computation . The sequential flow , concurrent flow as well FIG . 2 shows an activity diagram for converting auto
as loops and conditional constructs can be represented by the bytecode model to bytecode and executing the bytecode to
activity diagram . The steps in the implementation of meth- 35 generate the required result .
ods in class diagrams can be represented using activity FIG . 3 shows an example activity diagram illustrating an
diagram . There is a one to one mapping between a method if - then - else conditional construct .
in the class diagram and an activity diagram . To ensure FIG . 4 shows an example activity diagram illustrating a
software quality , a syntax verification process is performed loop .
on the components of the diagram . The syntax verifier 40 FIG . 5 shows an activity diagram for parsing the activity
verifies the components of the diagram against their syntac diagram to identify the components of the diagram .
tic specification to ensure syntactic correctness thereby FIG . 6 shows an activity diagram for performing syntax
ensuring software quality . check on the components of the diagram according to the

The syntactically correct diagrams are converted to an embodiments of the invention .
autobytecode model and the autobytecode model is analyzed 45 FIG . 7 shows an activity diagram for identifying the
to detect the control flow in the diagram thereby identifying execution sequence according to the embodiments of the
the execution sequence . The bytecode generation is based on invention .
a mapping from the autobytecode model to executable FIG . 8 shows an activity diagram for processing the
bytecode based on the execution sequence . Automating the decision node to identify loops and conditional constructs
process of bytecode generation helps to maintain consis- 50 according to the embodiments of the invention .
tency between the models and code generated . FIG.9 shows an activity diagram for performing bytecode

generation by examining the control flow and nodes
DISCLOSURE OF INVENTION involved according to the embodiments of the invention .

FIG . 10 shows an activity diagram describing the steps to
We have invented a method to generate executable byte- 55 generate executable bytecode for a loop structure according

code from an autobytecode model . In conventional methods , to the embodiments of the invention .
a human being or programmer has to write a computer FIG . 11 shows an activity diagram describing the steps to
program based on the design model and this program is generate executable bytecode for a conditional construct
converted into bytecode using a compiler like java compiler . according to the embodiments of the invention .
The conventional way of writing computer program in a 60
high level programming language like Java is not needed in BEST MODE OF IMPLEMENTATION
our invention , as we generate executable in the form of
bytecode automatically from the design model . Our method FIG . 1 shows the development framework for generating
consists of a computer program and a system that consists of executable bytecode from UML models . The system
a processor , data storage (volatile and non - volatile memory) , 65 includes UML tool , UML diagram parser , syntax verifier ,
input device and output device . The computer system should autobytecode model , execution sequence identifier , byte
have a UML tool and a Java Virtual Machine (JVM) and it code generation unit and bytecode testing unit .

20

US 10,824,402 B2
3 4

The analyst collects the requirements from the user and statement consists of the decision node and the action nodes
the system designer translates the requirements to class along the branches and the action node where all the
diagram and activity diagrams using a UML tool in 100. Any branches converge .
UML tool can be used to create the models and any FIG . 3 depicts the activity diagram for a conditional
application can be designed using UML diagrams . 5 statement . The activity diagram reads the marks of a student ,

The diagram parser in 101 parses the models and pro compares the marks with 50 , computes the result as either
duces a specification of the diagram . The specification pass or fail based on the comparison and prints the result .
includes all the required information about class diagrams The initial node is represented in step 300. The action node
such as attributes and methods of the class . The specification in step 301 reads the marks of a student . The decision node
also includes information about the nodes and transitions in 10 in step 302 validates the marks . If the mark is greater than
the activity diagram . 50 , control flows to step 303 , else control flows to step 304 .

In step 303 , the result of the student is entered as “ Pass ” The system further includes a syntax verifier module . The since his mark is greater than 50. In step 304 , the student syntax verifier in 102 validates each component of the result is entered as “ Fail ” since the marks scored by him are diagram against their syntactic specification and reports 15 less than 50. After processing of marks in either step 303 or errors if any . An autobytecode model comprising of class 304 , control flows to an action node 305 where both the and activity diagram specification is generated in 103. The Then and Else branches merge . In step 305 the action node
execution sequence identifier module in 104 traverses the prints the result as either Pass or Fail and control flows to the
diagram and identifies sequential flow , loops and conditional final node in step 306 .
constructs . A loop consists of a decision node and a set of action

The bytecode generation module in 105 generates execut nodes representing the body of the loop . One of the branches
able bytecode using the information provided by autobyte of the loop terminates at a previously visited node . Loops
code model . The function of the code test unit in 106 is to and conditional constructs are identified on encountering a
test the generated executable bytecode against the require decision node .
ments provided by the user . The java virtual machine in 107 25 FIG . 4 depicts the activity diagram for validating PIN in
executes the bytecode to produce result . The operating an ATM system . The ATM system contains a simple loop .
system in 108 can be either Windows or Linux . Control flow begins from the initial node 400. The ATM card
FIG . 2 represents a high level activity diagram for con is inserted in step 401 and the PIN is entered in step 402 , The

verting the autobytecode model to executable bytecode decision node in step 403 validates PIN . There are two
according to the embodiments of the invention . The class 30 outcomes : valid PIN or invalid PIN . If the PIN is valid
and activity diagrams are processed in various stages . Step control flows to step 404 which displays the menu for
200 corresponds to the initial node which indicates the proceeding with the transaction and finally to the final node
beginning of control flow . In step 201 , the class diagrams in step 406. In case of invalid PIN control flows
depicting the static structure and activity diagrams depicting which displays the message " Incorrect PIN ” and to the
the dynamic behaviour are designed using a UML tool in 35 previously visited action node 402 which prompts the user
accordance with the requirement specification . to re - enter the PIN . This path forms a loop . The loop

In step 202 , the design diagrams are parsed to obtain a involves the action node 402 , the decision node 403 and the
specification of the diagram . The parser identifies the vari action node 405 .
ous syntactic elements that constitute the diagram . The Corning back to FIG . 2 , step 206 generates executable
attributes and their data types , methods , its parameters and 40 bytecode from the autobytecode model . Bytecode genera
return type are identified . The different components of the tion procedure starts from the initial node and terminates at
activity diagram such as initial node , final node , action the final node . Control flow analysis is performed on the
states , decision nodes , edges and guard conditions are autobytecode model for executable code generation . The
extracted . The information pertaining to the components of execution sequence obtained in step 205 determines the
the diagram are stored in the corresponding data structures 45 order in which the nodes are processed and bytecode instruc
to generate the autobytecode model . tions are generated . The action nodes and decision nodes are

The specification obtained in step 202 is used by the processed and mapped to the corresponding bytecode
syntax verifier in step 203 to verify syntactic correctness . instructions during executable bytecode generation . Step
Each component of the diagram should conform to its 207 corresponds to the execution and testing of executable
syntactic specification . The syntax verifier operates on the 50 bytecode generated . The execution process consists of com
specification of the diagram by analyzing each component piling the bytecode generated and executing . Testing is
and reports the errors found in a separate data structure performed to ensure accuracy of bytecode generated thereby
called the error table . ensuring software quality . Step 208 corresponds to the final

After system design , parsing and syntax verification , the node where all computations terminate .
syntactically correct specification of the models are con- 55 FIG . 5 represents the diagram for parsing the UML
verted to an autobytecode model in step 204. The execution activity diagram . The activity diagram is a collection of
sequence is determined in step 205 from the autobytecode initial node , final node , action nodes , decision nodes ,
model . The execution sequence may be sequential involving branches , guard conditions and transitions . The aim of
a set of action nodes or it may be a loop or conditional parsing is to extract each component of the diagram and
statement involving a decision node and a set of action 60 store in the corresponding data structures in memory . Syntax nodes . A decision node usually represents a Boolean expres checking is performed on the diagram components . Control
sion . The control flow divides into two or more branches at flow begins from the initial node in step 500. In step 501 , the
the decision node . A conditional statement is an if - then - else first element is examined . The decision nodes in steps 502 ,
statement and it starts with a decision node where the control 506 and 508 analyzes the type of the element . The element
forks into two or more branches . Each branch has action 65 can be a pseudo state , action state , final state or a transition .
nodes specifying the activities performed in the branch . All Step 502 examines the current element and checks whether
the branches finally merge at an action node . The conditional it corresponds to a pseudo state . If the current element is a

step 405

US 10,824,402 B2
5 6

pseudo state control flows to step 503 , else control flows to merge or in situations where the action node is the target of
step 506. A pseudo state can represent either a decision node a loop statement , an action node can have more than one
or an initial node . In step 503 , if the current element is a incoming edge . Action node is used to specify computations ,
decision node , control flows to step 505 where the decision so it must have an outgoing edge . The decision node in step
node is processed . If the current element is an initial node , 5 606 checks whether the number of incoming transitions is
control flows to step 504. The name , id and type of node is equal to zero or the number of outgoing transitions is equal
obtained in step 505 and stored in memory for use in later to zero . If the Boolean expression evaluates to true , the error
stages of executable code generation . The information about missing edge is reported in step 605 , else control flows to
the branches from the decision node and guard conditions on step 607. After storing error in a separate data structure in
the branches are also stored in memory . In step 504 , the 10 memory in step 605 , control flows to step 607 to read the
initial node is processed and stored in memory . next node .

The decision node in step 506 checks whether the current Step 608 checks whether the current node is a final node
element is an action state . If it is an action state , control or a decision node . If the decision check in step 608
flows to step 507 , else control flows to step 508. In step 507 , determines that the current node is a decision node , control
the action node details such as node name and id are 15 flows to step 610 else control flows to step 609. A final node
obtained and stored in a separate data structure in memory is the last node in the diagram . The final node depicts the end
for use during the later stages of executable code generation . of control flow . Hence it has only incoming edges and no

Step 508 corresponds to identifying the current element , outgoing edge . The decision node in step 609 checks
if it is a transition control flows to else if it is a final node whether there are incoming edges to the final node . If the
control flows to 510. In step 509 , the specifications of the 20 number of incoming edges is zero , missing edge error is
transitions such as source , target , guard conditions , transi reported in step 605 , else control flows to step 607 .
tion id are obtained and stored in a separate data structure in Steps 610 to 615 correspond to the syntax checking of the
memory . The information pertaining to the transitions are decision node . Step 610 analyzes the count of incoming and
used to identify the execution sequence as well as during outgoing transitions . A decision node evaluates a Boolean
executable code generation . In step 510 , the id of the final 25 expression and control forks into two or more branches
node is obtained and stored in a separate data structure . Step depending on the result of evaluation . So a decision node
511 corresponds to reading the next element . After perform should have at least one incoming edge and at least two
ing the processing of steps 504 , 505 , 507 , 509 , 510 control outgoing edges . A violation of these conditions leads to the
flows to step 511. Step 512 is a decision node that checks missing edge error in step 605. Step 611 analyzes the guard
whether next element exists . If there are unprocessed ele- 30 conditions on the branches leaving decision node . To be
ments , control flows to the decision node in 502 , else control syntactically correct , all the edges leaving the decision node
flow terminates in step 513. Steps 502 to 512 forms a loop should be labeled with mutually exclusive guard conditions .
that reads elen ats , identifies the type of element , processes Step 612 checks whether guard conditions are present . If
them and stores information of the nodes in separate data guard conditions are not present , missing guard error is
structures in memory . After processing of the diagram , 35 reported and stored in the error table in step 615. If guard
components of the diagram and information pertaining to conditions are present , step 613 compares the guard condi
each component are available in separate data structures tions . Guard conditions determine which among the alter
stored in memory . nate paths are to be followed after evaluating the Boolean
FIG . 6 depicts the activity diagram for syntax verification expression in the decision node . If the guard conditions are

process . During design phase , errors can occur . A situation 40 found identical in step 613 , the error identical guard condi
in which there are no incoming edges to any node except tion is stored to error table in step 614. If the guard
initial node or no outgoing edge from any node except final conditions are mutually exclusive , control flows to step 607 .
node leads to missing edge error . Missing edges result in a The errors identified in steps 605 , 614 and 615 are stored in
break in control flow . Identical or missing guard conditions a separate data structure named error table in memory . The
associated with the branches and guard conditions can also 45 error table contains information about the error type and the
lead to error during executable bytecode generation . node in which the error occurs .

Control flow begins from node 600. In step 601 , the first After performing the syntax check on the current node ,
element which is usually the initial node is examined . For the next node is read in step 607. The decision node in step
each node , compute the number of transitions with current 616 checks whether next node exists . If such a node exists ,
node as the source (outgoing transitions) and the number of 50 control branches to step 602 , else the syntax checking
transitions with current node as the target (incoming tran process terminates at the final node in step 617. After
sitions) . Step 602 performs this computation . The data performing the syntax check , an autobytecode model is
structure storing information about transitions computed in created and is used to determine the execution sequence .
step 509 is accessed for performing the computation . Steps FIG . 7 represents the activity diagram for identification of
602 to 616 are executed in a loop until all the nodes are 55 execution sequence . Activity diagrams represent sequential
examined . The decision node in step 603 determines the control flow , loops and conditional statements . To identify
node type . If the current node is an action node step 606 is the execution sequence , the autobytecode model is analyzed .
executed , if it is an initial node , step 604 is executed else Separate data structures are maintained for sequential flow ,
control flows to the decision node in step 608 . loop and conditional constructs .

In step 604 , the syntax of initial node is verified . The 60 Processing starts with step 700. The initial node of the
syntactic specification is that an initial node should have an activity diagram is examined in step 701. The node is
outgoing edge . If this condition is violated , missing edge marked as visited and added to data structure for storing
error is reported in step 605. If the syntax is correct , control information about nodes in the sequential control flow in
flows to step 607. In step 606 , the syntax of the action node step 702. The nodes after examination are added to a data
is checked . An action node occurs in between an initial node 65 structure and marked as visited . The visited flag serves to
and final node , hence it should have incoming and outgoing identify the nodes that are explored . Identification of the
edges . In situations where the branches of decision node execution sequence starts with the initial node . A depth first

5

US 10,824,402 B2
7 8

search algorithm is performed on the autobytecode model to If the current node is an unvisited node , control flows to
identify the nodes in the execution sequence . Step 703 step 810 which compares the Then and Else lists to identify
identifies the next node in the execution sequence . The a common action node where both the Then and Else
sequential execution consists only of action nodes and initial branches merge . If a common node is encountered in step
and final node . 811 , a condition label is attached to the node and the action

The current node determined in step 703 is analyzed in node is added as the last node in the Then and Else lists in
step 704. If the current node is visited , it is added to the list step 812. If both the lists do not have a node in common , and no further processing of the node is performed and control flows from step 811 to step 802 to identify the next control flows to step 703. Steps 703 and 704 constitute a
loop to identify the next non visited node . In case of a 10 tional statements stops at step 813 after all the nodes in Else node in the Then branch . Identification of loops and condi
non - visited node control flows to step 705 from step 704 and Then branches have been explored . which marks the node as visited . After attaching the visited
label , the node is processed in step 706. The decision node FIG . 9 represents the activity diagram for generation of
in step 707 determines the node type and control branches executable bytecode . The execution sequence obtained in
accordingly . is step 205 after processing of the autobytecode model is

Steps 708 to 710 correspond to the processing of action stored in separate data structures in memory . The execution
node . In the case of conditional construct , the action node sequence and the autobytecode model is input to the byte
where the Then and Else branches merge has two incoming code generator . Step 900 corresponds to the initial node .
edges . In the case of a loop , an action node which is the Step 901 examines the first node in the sequential execution
target of a branch has two incoming edges . In both cases , a 20 sequence list . Each node after examination for bytecode
label is attached , with the action node . During coding , a generation is marked as visited . The node type is checked in
branch to the corresponding node can be implemented using step 902. If initial node is encountered , control branches to
a goto statement to the label of the node . Step 708 identifies step 903 else control branches to step 905 .
the incoming edges and the decision node in step 709 checks In step 903 , a bytecode file is created and bytecode for the
the number of incoming edges . If the number is greater than 25 init method is written to the bytecode file . Every bytecode
one , a label is attached to the node in step 710 and control file contains a code segment for the init method . Step 904
flows to examining the next node in step 703. If the count is examines the attributes defined in the class diagram and
equal to one control flows to step 703 . writes bytecode for initializing arrays and attributes . The

If it is determined in step 707 that the current node is a
decision node , control flows to step 711. Processing of the 30 obtained as a result of parsing the class diagram . attributes and their type are obtained from the data structure
decision node in step 711 is detailed in FIG . 8. After Step 905 checks whether the current node is an action processing decision node , the next node in the execution node . If yes , control branches to step 906 , else control flows sequence is obtained in step 703. If step 707 determines that
the current node is a final node , processing of final node to step 909. Step 906 processes the action node . The action
occurs in step 712. The final node is added as the last node 35 node is marked as visited . The action associated with the
in the execution sequence in step 712 and control flow ends node , the attributes involved in generating the executable
at the node in step 713 . code , and the label associated with the action node are
FIG . 8 depicts the activity diagram for the processing of identified in step 907. After obtaining the information

decision node to identify loops and conditional statements . required for generating executable bytecode , the action node
Usually decision nodes are associated with conditional con- 40 is mapped to the corresponding code and written to the
structs such as If - Then - Else or with looping statements . Step bytecode file in step 908 .
800 represents the initial node and step 801 corresponds to Step 909 checks whether the current node is a decision
processing of the decision node . The Then and Else branches node or final node . In case of decision node , control
of a decision node are stored in separate data structures in branches to step 910 and to step 913 in case of final node .
memory . The guard conditions on edges emanating from the 45 Step 910 processes the decision node . A decision node can
decision node determines the Then and Else branches . be involved in a loop or a conditional statement . The

Step 802 examines the Then branch . The nodes in the conditional statement list and loop statement list obtained as
Then branches are processed in step 803. A label is associ a result of processing the activity diagram of FIG . 8 are used
ated with the first node of the Then branch and added to the to determine whether the decision node is part of a loop or
list of nodes associated ; with Then branch . The decision 50 conditional statement . If the decision node is part of a loop ,
node in step 804 checks whether the node is an already control branches to process loop in step 911 and to step 912
visited node . During loop processing , one the branches will if the decision node is part of a conditional statement .
lead to an already visited node . If the current node is visited , Executable bytecode generation for the loop and conditional
a loop structure is encountered , and the node is added to the statement is based on the processing of the corresponding
data structure corresponding to the loop and stored in 55 lists stored in memory . Bytecode generation of the loop and
memory for later use in step 805. To branch to the node conditional statements are detailed in FIG . 10 and FIG . 11 .
during bytecode generation , a loop label is associated with After executable bytecode generation of the loop and con
the node in step 806. After processing of the node in in step ditional statements , control flows to step 914 to examine the
806 , the Else branch is examined in step 807 . next node in the execution sequence .

In the decision check of step 804 , if the current node is not 60 A final node is the last node in the activity diagram . A
visited it is added to the list of nodes corresponding to the bytecode file has the code for init method as well as the code
conditional construct and the first node in Else is examined for end method . On encountering a final node which denotes
in step 807. The node is processed and added to the list of the end of control flow or end of processing , the executable
Else nodes in step 808. In the case of the first node of Else bytecode for end method is written to the file in step 913 .
branch , an else label is attached in step 808. If the current 65 Step 914 examines the next node in the current list . Control
node is found to be visited in step 809 , control flows to step flows to step 914 after the processing of action nodes in step
805 . 904 , 908 , 911 , 912 and 913. The decision node in step 915

US 10,824,402 B2
9 10

checks whether next a node exists . If node exists , control tional expression . A goto statement to the label of the first
flows to step 905 else control flows to the final node in step node in the list of Else nodes is also associated with the
916 . executable bytecode for conditional expression in step 1103 .

FIG . 10 depicts the activity diagram for generating Step 1104 examines the first node of the Then branch .
executable bytecode for the loop . A loop usually has two 5 Steps 1105 to 1112 are executed repetitively until no more
parts . If the loop condition is satisfied a set of statements will nodes are to be examined . The executable bytecode genera
be executed repetitively until the condition becomes false . tion steps are the same for Else branch and Then branch . The
This branch shall be termed as the Then branch . The nodes of the Then branch are examined first and later the
statements that will be executed if the condition becomes nodes of the Else branch are examined . Executable bytecode
false shall be termed as the Else branch . One of the branches 10 generation process ends with the process of bytecode gen
of the decision node will always branch to an already visited eration of the action node where the Then and Else branches
node . merge in step 1113 and the final node in step 1114 .
Loop processing starts with the initial node in step 1000 . Step 1105 examines whether the current node belongs to

In step 1001 , the loop condition is analyzed to generate the Then branch or Else branch . Control flows to step 1106
bytecode for the condition . Loop control variables are iden- 15 if it belongs to either the Then branch or Else branch . In step
tified . A label is associated with the condition check inorder 1106 , the node is marked as visited and removed from the
to effect a branch to the first statement of the loop for list of nodes in step 1107. The nodes for which executable
repeated execution . Bytecode for loop initialization is writ bytecode is generated is labeled as visited . After bytecode
ten to bytecode file . The label- and the loop condition are generation , the list for the conditional statements shall be
mapped to the corresponding bytecode . The first node of 20 empty .
Then branch is examined in step 1002. Step 1003 checks The type of node is checked by the decision node in step
whether the first node is already visited . If the node is 1108. If the node is a decision node , control flows to step
visited , a loop is identified and a goto statement to the label 1109. If the node is an action node , control flows to step
of the node is written to the file in step 1004. Bytecode 1110. In step 1109 , the decision node is processed and
generation for the Then branch is complete and the nodes of 25 bytecode is generated according to the steps outlined in
the Else branch are examined for executable bytecode FIGS . 10 and 11. In step 1110 , processing of action node is ,
generation . The Else branch is examined in step 1012 . performed and bytecode generation is based on the steps

In step 1003 , if the node is an unvisited node , control 906 , 907 and 908 outlined in FIG . 9 .
flows to step 1005. Any node for which bytecode generation After processing the node and generating executable
is being performed is marked as visited . Mark the node as 30 bytecode , control flows from steps 1109 and 1110 to step
visited in step 1005. Remove from the list of nodes since 1111. The next non visited node in the current list is
executable bytecode is generated for the node . This function examined in step 1111. The list can be either the list
is performed in step 1006. Inorder to generate executable associated with the Then branch or Else branch . If a node
bytecode , the node type has to be identified . Step 1007 exists in the decision check of step 1112 , control branches to
performs this check . Control branches to step 1008 if the 35 step 1105 else control branches to step 1113. Steps 1105 to
current node is an action node and to step 1009 if the node 1112 are executed repeatedly until the Then and Else lists are
is a decision node . exhausted . First the nodes in the Then list is examined

Step 1008 generates the executable bytecode for action followed by the nodes in the Else list . After bytecode
node as detailed in steps 906 to 908. Step 1009 processes the generation for the Then list is exhausted , a bytecode state
decision node to generate executable bytecode . After byte- 40 ment containing goto to the label of the merge node is
code generation is performed , the next node is examined in written to the bytecode file . The processing of action node is
step 1010. If next node exists in the list (step 1011) , it is performed in step 1113. Executable bytecode generation
examined in step 1003. If node does not exist , control process ends at the final node in step 1114 .
branches to examining the Else branch . Control flows to step The disclosure provides an efficient method for automatic
1012 from steps 1011 and 1004. Step 1012 examines the first 45 generation of executable bytecode from an autobytecode
node of Else branch . If the node is an unvisited node , control model and also verifying the syntactic correctness of the
flows to step 1005. If the check performed by step 1013 diagram before generating executable bytecode .
identifies the node as already visited , bytecode generation With the embodiments disclosed therein , we have verified
corresponds to creation of a goto statement to the label of the the syntactic correctness of the activity diagrams thereby
visited node in step 1014. Since the node has been visited 50 eliminating syntax errors that can occur during design stage .
before , bytecode has been generated for the node and code With the embodiments disclosed therein , the autobyte
generation requires only a goto statement to the label of the code model generated from syntactically correct diagrams
node . Bytecode generation for the loop is completed in step are used to determine the execution sequence that includes
1015 . sequential flow of control , loops and conditional constructs .
FIG . 1100 represents the activity diagram for the execut- 55 With the embodiments disclosed therein , executable byte

able bytecode generation of a conditional expression . A code is generated based on the execution sequence and
conditional expression is an If - Then - Else construct . The written to a file .
decision node evaluates a conditional expression . If the The method requires several stages . In the first stage ,
condition evaluates to true , the Then branch is followed . If requirements are modelled using a UML tool and a diagram
the condition evaluates to false , the Else branch is followed . 60 parser extracts the components of the diagram . Syntax
The branches finally merge at a common node which is an verification and autobytecode model generation constitutes
action node . the second stage where each component is verified against

Processing starts with the initial node in step 1100. Step its syntactic specification and an autobytecode model is
1101 examines the decision node . The conditional expres generated from the syntactic specification . The execution
sion is identified , the attributes involved in the expression 65 sequence is determined from the autobytecode model in the
and the labels of Then and Else branches are also identified . third stage . The fourth stage comprises of executable byte
Step 1102 generates the executable bytecode for the condi code generation from the execution sequence .

5

US 10,824,402 B2
11 12

Activity diagrams depict the control flow behavior of the 2. The method according to claim 1 , wherein step B.
system . Any type of system can be modelled using class and further comprising :
activity diagrams . The disclosure can be applied to any type utilizing a diagram parser to parse one or more class and
of activity diagram and it generates bytecode for sequential , activity diagrams to identify the one or more UML
looping and conditional constructs . diagram components and producing a specification of

The invention may be implemented in software . The the diagram .
embodiment of the invention can be implemented as a 3. The method according to claim 2 , wherein step C. computer program executing on programmable computers further comprising : each comprising a processor , a data storage system , at least utilizing a syntax verifier to analyze each component of one input device and at least one output device . Design 10 the UML diagram against their syntactic specification diagrams are given as input to the program code and output
is the executable bytecode resulting in execution of the to create the autobytecode model .
design model . 4. The method according to claim 3 , further comprising :

The programs for the different modules are implemented determining whether each node has a desired number of
preferably in a platform independent high level object 15 incoming and outgoing edges and does not lead to a
oriented programming language . Each such program is break in control flow .
stored on a non - volatile memory . The output of the bytecode 5. The method according to claim 4 , further comprising :
generation phase is the executable bytecode generated for determining whether all branches from a decision node
the design model . The bytecode can be executed on any java have guard conditions and do not lead to :
virtual machine running on any platform to produce output . 20 i) missing guard conditions thereby causing inconsis
The syntactically correct diagrams are converted to an tency ; and
autobytecode model and the automatic translation of auto ii) whether the guard conditions are mutually exclusive
bytecode model to executable bytecode produces accurate and do not lead to identical guard
and efficient platform independent code that can be executed conditions error thereby causing ambiguity and inconsis
on any platform having java virtual machine running on top 25 tency .
of it . 6. The method according to claim 1 , wherein step D.

The invention claimed is : further comprising :
1. A method of generating an executable bytecode from starting with an initial node , identifying a next node in the syntactically correct class and activity diagrams designated sequence and determining whether the next node is an as autobytecode model , the method comprising the follow- 30 action node that forms part of the sequential execution ing steps : and , if so , adding it to a list of nodes in the sequential A. automating a bytecode generation process from the flow of execution . autobytecode me wherein the bytecode generation 7. The method according to claim 1 , wherein step E. process avoids generation of Java code : further comprising : B. parsing an Unified Modified Language (UML) diagram 35

to identify one or more components of the UML examining a decision node ;
diagram ; determining whether one of an outgoing edge from the

C. verifying syntactic correctness of each component of decision node merges at a previously visited node and ,
the UML diagram ; if so , identifying a corresponding loop construct ; and

D. identifying a sequential flow of execution in the 40 determining whether there is a common node where a
“ Then and Else ” conditional construct branch merges autobytecode model ;

E. identifying one or more loops and conditional con and , if so , determining a corresponding conditional
" If - Then - Else ” construct . structs ;

F. generating executable bytecode directly from the auto 8. The method according to claim 1 , wherein step F. is
bytecode model created from UML design models ; based on the execution sequence identified from the auto

G. maintaining consistency between the UML model and bytecode model .
the generated executable bytecode ; and 9. The method according to claim 1 , wherein step G.

further comprising : H. generating platform independent bytecode executable
on any computing platform , automatically determining whether the UML model is syn

wherein step A , further comprises : tactically correct and , if so , converting the UML model to an
examining an execution sequence ; autobytecode model .
identifying one or more activities represented by one or 10. The method according to claim 9 , further comprising :
more action nodes and decision determining the execution sequence and automating the

nodes in the execution sequence ; and process of bytecode generation directly from the autobyte
code model . identifying one or more attributes involved in the one or 55

more activities and mapping the one or more action 11. The method according to claim 1 , wherein step H.
nodes and decision nodes to equivalent executable further comprising :
bytecode according to the activities specified in the one generating a platform independent bytecode executable on a
or more action nodes and decision nodes without using Java Virtual Machine running on either a Windows platform

or a Linux platform . a programmer and without writing a high level lan- 60
guage program .

45

50

